Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures.
نویسندگان
چکیده
Activation of cannabinoid receptors inhibits voltage-gated Ca2+ channels and activates K+ channels, reminiscent of other G-protein-coupled signaling pathways that produce presynaptic inhibition. We tested cannabinoid receptor agonists for effects on excitatory neurotransmission between cultured rat hippocampal neurons. Reducing the extracellular Mg2+ concentration to 0.1 mM elicited repetitive, transient increases in intracellular Ca2+ concentration ([Ca2+]i spikes) that resulted from bursts of action potentials, as measured by combined whole-cell current clamp and indo-1-based microfluorimetry. Pharmacological characterization indicated that the [Ca2+]i spikes required glutamatergic synaptic transmission. Cannabinoid receptor ligands inhibited stereoselectively the frequency of [Ca2+]i spiking in the rank order of potency: CP 54,939 > CP 55,940 > Win 55,212-2 > anandamide, with EC50 values of 0.36, 1.2, 2.7, and 71 nM, respectively. CP 55,940 was potent, but not efficacious, and reversed the inhibition produced by Win 55,212-2, indicating that it is a partial agonist. Inhibition of [Ca2+]i spiking by Win 55,212-2 was prevented by treatment of cultures with active, but not heat-treated, pertussis toxin. Win 55,212-2 (100 nM) inhibited stereoselectively CNQX-sensitive excitatory postsynaptic currents (EPSCs) elicited by presynaptic stimulation with an extracellular electrode, but did not affect the presynaptic action potential or currents elicited by direct application of kainate. Consistent with a presynaptic site of action, Win 55,212-2 increased both the number of response failures and the coefficient of variation of the evoked EPSCs. In contrast, cannabimimetics did not affect bicuculline-sensitive inhibitory postsynaptic currents. Thus, activation of cannabinoid receptors inhibits the presynaptic release of glutamate via an inhibitory G-protein.
منابع مشابه
The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices
It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملThe effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices
It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...
متن کاملEffect of Cannabinoid Receptor Activation on Spreading Depression
Objective(s) The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods T...
متن کاملCannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons.
Cannabinoids and their analogues have been found to inhibit N- and P/Q-type Ca2+ currents in cell lines and sympathetic neurons transfected with cannabinoid CB1 receptor. However, the effects of cannabinoids on Ca2+ currents in the CNS are largely unexplored. In this study we investigated whether these compounds inhibit Ca2+ channels in cultured rat hippocampal neurons. With the use of antibodi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 14 شماره
صفحات -
تاریخ انتشار 1996